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Fig. 1. Parameterizing a disk topology mesh (1792000 triangles) with low isometric distortion and no foldovers by optimizing the symmetric Dirichlet energy
(E(M,Mp) in Problem (5)). Starting from the same bijective initialization [Tutte 1963] (a), the energy is measured during the optimization process. The figure
(b - e) shows a snapshot of the state each method achieved at the 9th iteration marked on the graph (f). The corresponding time in seconds is marked on the
graph (g). The color of the triangles from the parameterized meshes encodes the symmetric Dirichlet energy metric, with white being optimal. Our approach
achieves much better efficiency than the competitors including SLIM [Rabinovich et al. 2017], AKVF [Claici et al. 2017], and CM [Shtengel et al. 2017]. In order
to achieve our result in (e), SLIM, AKVF and CM require 144, 81, and 17 more iterations and 314.60, 184.45, and 38.65 more seconds, respectively.

We propose a novel approach, called Progressive Parameterizations, to com-
pute foldover-free parameterizations with low isometric distortion on disk
topology meshes. Instead of using the input mesh as a reference to define
the objective function, we introduce a progressive reference that contains
bounded distortion to the parameterized mesh and is as close as possible to
the input mesh. After optimizing the bounded distortion energy between the
progressive reference and the parameterized mesh, the parameterized mesh
easily approaches the progressive reference, thereby also coming close to the
input. By iteratively generating the progressive reference and optimizing the
bounded distortion energy to update the parameterized mesh, our algorithm
achieves high-quality parameterizations with strong practical reliability and
high efficiency. We have demonstrated that our algorithm succeeds on a
massive test data set containing over 20712 complex disk topology meshes.
Compared to the state-of-the-art methods, our method has achieved higher
computational efficiency and practical reliability.
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1 INTRODUCTION
Surface parameterization is a fundamental problem in computer
graphics and geometric processing; thus, it has been widely used
in many applications, such as texture mapping, remeshing, inter-
surface mapping, and shape analysis (cf. extensive surveys [Floater
and Hormann 2005; Hormann et al. 2007; Sheffer et al. 2006]).

These tasks rely on the computation of a foldover-free, low-distortion
parameterization. Linear methods, such as Tutte’s method and its
variants [Aigerman and Lipman 2015; Floater 2003; Tutte 1963],
provide injectivity-guaranteed parameterization, but usually exhibit
extremely large distortion for complex inputs. Nonlinear methods
formulate parameterization as an optimization problem by mini-
mizing an energy functions with some constraints that preserve
the orientations of triangles. Generally, the objective function in-
cludes a low-distortion term that is large when the triangle is highly
distorted. It may also include a foldover-preventing term that goes
to infinity when a triangle flips or degenerates. These objective
functions are highly non-convex and non-linear; thus, they are
numerically difficult to optimize, particularly for large-scale inputs.
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From a geometric standpoint, these energy functions in the pa-
rameterization problem (and other geometric processing problems)
are defined on triangle vertices reflecting the topology of the un-
derlying triangular mesh and thus are highly structured. Instead of
using generic optimization methods, many geometric optimization
algorithms usually take advantage of the particular structure of the
energies to solve the optimization. There are many specialized opti-
mization methods, such as the local/global methods [Liu et al. 2008;
Sorkine and Alexa 2007], bounded distortion methods [Aigerman
et al. 2014; Kovalsky et al. 2015; Lipman 2012], representation based
methods [Chien et al. 2016b; Fu and Liu 2016; Sheffer et al. 2005],
etc. However, these methods are not guaranteed to produce a valid
foldover-free parameterization.
From an optimization standpoint, the commonly used methods

that guarantee a valid solution are those that begin with a feasible
(folder-free) initialization, e.g., Tutte’s method [Tutte 1963], and en-
sure that it never leaves the feasible region, i.e., maintaining foldover-
free constraints, during the optimization iterations. There are many
recent works such as the block coordinate descent methods [Fu et al.
2015; Hormann and Greiner 2000], the quasi-Newtonmethod [Smith
and Schaefer 2015], preconditioning methods [Claici et al. 2017; Ko-
valsky et al. 2016], the reweighting descent method [Rabinovich et al.
2017], or the composite majorization method [Shtengel et al. 2017].
However, the Tutte’s parameterization may introduce extremely
large distortion for some triangles. Thus, these approaches may
demand a large number of iterations to obtain a good enough result
and to converge in many cases.
In contrast to existing methods, which focus on developing so-

phisticated techniques for solving poorly behaved optimizations,
we study the problem from a different view. We observe that the dis-
tortion on each triangle is measured by some (isometric) distortion
metrics on the Jacobian of the affine map between the triangle of
the input mesh, called the reference triangle, and the corresponding
triangle in the target (i.e., the initial Tutte’s parameterization at the
first iteration). Our key insight is that instead of taking the triangles
in the input mesh (the ideal reference triangles) as the reference
ones, we take some intermediate reference triangles to define the
distortion energy. If we carefully choose the appropriate interme-
diate reference triangles such that the distortion metric of each
individual triangle can be bounded, then the minimization can be
quickly solved. We do this in an iterative manner and choose the
reference triangles that progressively approximate the ideal triangles
during the iterations. If the reference triangles approximate the ideal
triangles well, then we can obtain a good solution to the original
optimization problem. In our method, we generate a series of inter-
mediate parameterizations according to the progressive references;
we call them progressive parameterizations.

As far as we know, our approach is the first to solve the parame-
terization problem via iteratively altering the objective distortion
energy instead of performing complicated optimization skills. Our
approach is simple and performs better and faster than current
state-of-the-art methods. We have conducted a large number of
experiments and comparisons, which show the feasibility and effec-
tiveness of our proposed approach.

2 RELATED WORK
Foldover-free parameterizations. Parameterizations of disk topol-

ogy meshes have attracted considerable research attention in the
past thirty years (cf. the surveys in [Floater and Hormann 2005;
Hormann et al. 2007; Sheffer et al. 2006]). Here, we review only
the most relevant prior works. Many methods focus on creating
foldover-free parameterizations, such as the Tutte’s embedding and
its variants [Aigerman et al. 2017; Aigerman and Lipman 2015, 2016;
Bright et al. 2017; Floater 2003; Tutte 1963], bounded distortion
methods [Aigerman et al. 2014; Kovalsky et al. 2015; Lipman 2012],
fixed boundary methods [Weber and Zorin 2014], representation-
based methods [Chien et al. 2016b; Fu and Liu 2016; Sheffer et al.
2005], and maintenance-based methods [Claici et al. 2017; Degener
et al. 2003; Fu et al. 2015; Hormann and Greiner 2000; Jiang et al.
2017; Kovalsky et al. 2016; Rabinovich et al. 2017; Schüller et al.
2013; Shtengel et al. 2017; Smith and Schaefer 2015]. The Tutte’s
embedding and its variants are theoretically guaranteed to generate
bijective parameterizations that do not flip. However, their isomet-
ric distortions are substantially large. Setting an appropriate bound
that will ensure no foldovers in the bounded distortion methods
remains a subject for study. The representation-based methods are
not theoretically guaranteed to eliminate all foldovers. The fixed
boundary method can always produce foldover-free results, but it
requires a prescribed boundary and may introduce high distortion if
the given boundary is inappropriate. The maintenance-based meth-
ods first initialize using the Tutte’s embedding and then optimize a
foldover-prevented energy, like the AMIPS energy [Fu et al. 2015] or
the symmetric Dirichlet energy [Smith and Schaefer 2015], to reduce
the isometric distortion while ensuring no foldovers. However, the
designed numerical solvers may converge slowly due to the large
isometric distortion of the initializations. To guarantee no foldovers,
we also use the maintenance-based method. In contrast to the ex-
isting methods, we present the progressive reference triangles as a
way to define a bounded energy that can relieve the large distortion
effects and improve efficiency.

Planar affine transformation interpolation. Many methods gener-
ate the planar shape sequence between the given source and target
models, like the ARAP interpolation [Alexa et al. 2000], controllable
conformal interpolation [Weber and Gotsman 2010], or bounded
distortion interpolation [Chen et al. 2013; Chien et al. 2016a]. These
techniques can be used to generate the intermediate reference; how-
ever, the shape reconstruction often requires solving a linear system,
which is costly for our method. Furthermore, foldovers may appear
in the reconstructed shape, which are not appropriate guides for
computing parameterization. Therefore, we only individually inter-
polate the intermediate triangles without shape reconstruction.

Since affine transformations are usually used to define distortion
functions, we interpolate the affine transformations to construct the
intermediate references. This process does not utilize triangle edges
or angles. Many methods are proposed to conduct the planar affine
transformation interpolation, such as the ARAP method [Alexa et al.
2000], and the exponential map method [Alexa 2002; Grassia 1998;
Rossignac and Vinacua 2011]. Our method employs the exponential
function to conduct the interpolation.
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Fig. 2. Reference-based parameterization. (a) Individual reference triangles.
(b) Parameterized mesh.

Cut path construction. Taking a closed triangular mesh as input,
some approaches [Gu et al. 2002; Sheffer 2002; Sheffer andHart 2002]
first optimize the cut paths that tailor the mesh to the disk topology.
Then, they compute a low isometric distortion parameterization. In
contrast to the above methods, the cuts and isometric distortions
are optimized simultaneously [Poranne et al. 2017]. Furthermore,
multiple charts are generated to produce low isometric distortion
results, such as [Lévy et al. 2002; Sorkine et al. 2002; Zhou et al. 2004].
On the one hand, our method can be used to parameterize single
patch meshes for these methods. On the other hand, our method
can provide as isometric as possible results, even with poor cuts. To
verify the practical robustness and reliability, we construct a large
testing data set of 20712 disk topology models using the formerly
mentioned methods and designed poor cuts in Section 4.2.

3 PROGRESSIVE PARAMETERIZATIONS
Mesh parameterization. We denote the input 3D triangular mesh

with disk topology asM = {V,F } with Nv verticesV = {vi , i =
1, · · · ,Nv} and Nf triangles F = {fi , i = 1, · · · ,Nf}. The parame-
terization ofM is a continuous piecewise affine map Φ :M →Mp

fromM to a planar triangular meshMp, whereMp = {Vp,F p}
with verticesVp = {vpi , i = 1, · · · ,Nv} and triangles F p = {fpi , i =
1, · · · ,Nf}. We denote the triangles with three corresponding ver-
tices as fi = △vi,0vi,1vi,2 and fpi = △v

p
i,0v

p
i,1v

p
i,2.

3.1 Reference-guided distortion metric
Reference-guided distortion metric. The distortion of triangle fpi

is measured with a distortion metric that reflects angle and/or area
changes between the reference triangle, denoted as fri = △v

r
i,0v

r
i,1v

r
i,2,

and fpi (Fig. 2). The distortion metric, denoted as D(fri , f
p
i ), depends

solely on the shapes of fri and fpi and is invariant to rotations and
translations. The set of reference triangles is denoted as Mr =
{fri , i = 1, · · · ,Nf }. Note thatMr is just a set of individual triangles
in the plane (Fig. 2 (a)), instead of a connected triangular mesh.

Jacobian of affine maps. We denote ϕi : fri → fpi as the affine
map between the two triangles (Fig. 2). This can be represented as
ϕi (x) = Jix + bi ,∀x ∈ fri , where bi is a translation vector and Ji is
a 2 × 2 Jacobian matrix determined by fri and fpi . It is computed as:

Ji (fri , f
p
i ) =

[
vpi,0 − v

p
i,1 vpi,0 − v

p
i,2

] [
vri,0 − v

r
i,1 vri,0 − v

r
i,2

]−1
. (1)

If the reference triangle fri is given, Ji (f
r
i , f

p
i ) is a linear function of

fpi , i.e., a function of vpi,0, v
p
i,1, v

p
i,2.

Isometric distortion metric. The distortion metric D(fri , f
p
i ) is gen-

erally formulated in terms of Ji (fri , f
p
i ) in geometric processing.

D(fri , f
p
i ) is known as an isometric distortion metric if it is mini-

mal only for rotations. A variety of isometric distortion metrics
have been developed in the literature. We adopt a popular choice,
which is the symmetric Dirichlet energy metric [Smith and Schaefer
2015]:

D(fri , f
p
i ) = D(Ji (fri , f

p
i )) =


1
4

(
∥ Ji ∥

2
F + ∥ J

−1
i ∥

2
F

)
, if det Ji > 0,

+∞, otherwise,
(2)

where ∥·∥F denotes the Frobenius norm. The above distortionmetric
is infinite for degenerate or flipped triangles. Note that we can adopt
any other flip-preventing distortion metrics, such as the isometric
AMIPS [Fu et al. 2015], which are also infinite for degenerate or
flipped triangles.

We utilize the singular values of Ji to compute D(fri , f
p
i ). Here, we

denote Ji = UiSiVT
i as the singular value decomposition (SVD) of Ji ,

whereUi and Vi are the orthogonal matrices, and Si = diag(σi ,τi )
is a diagonal matrix with singular values on the diagonal.

D(fri , f
p
i ) =


1
4

(
σ 2
i + σ

−2
i + τ

2
i + τ

−2
i

)
, if det Ji > 0,

+∞, otherwise,
(3)

when σi = τi = 1, Ji is a rotation transformation, denoted as
J0i = Ui IV

T
i (I is the identity matrix), and D(fri , f

p
i ) reaches the

minimum of 1.

3.2 Formulation and challenges
Minimization formulation. The distortion of the parameterization
Mp is the sum of the distortions of its individual triangles.Mp is
obtained by solving the following minimization:

min
Mp

E(Mr,Mp) =
Nf∑
i=1

ωiD(fri , f
p
i ),

s.t. det Ji (fri , f
p
i ) > 0, i = 1, · · · ,Nf,

(4)

where ωi are weights.

Existing methods for selecting reference triangles. In all existing
works, the triangles from M are chosen as reference triangles.
Specifically, each triangle fi is isometrically mapped onto a triangle
on the plane with its own local coordinate frame. This mapped tri-
angle is chosen as the ideal reference triangle. Without the loss of
generality, we also denote the ideal reference triangle as fi . Thus,
the problem (4) becomes:

min
Mp

E(M,Mp) =
Nf∑
i=1

ωiD(fi , f
p
i ),

s.t. det Ji (fi , f
p
i ) > 0, i = 1, · · · ,Nf,

(5)

where ωi is set as the area of fi , i = 1, · · · ,Nf , in existing methods.

Optimization and initialization. The objective function in (4) or (5)
is highly nonlinear with nonconvex and nonlinear constraints. Sev-
eral recent works have proposed various methods to solve it [Claici
et al. 2017; Rabinovich et al. 2017; Shtengel et al. 2017; Smith and
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Schaefer 2015]. To guarantee a foldover-free parameterization, the
most common methodology starts from a flipless initialization and
then reduces the distortion energy while ensuring that the solu-
tion is always kept within the feasible region. One known method
to compute flipless initial parameterizations is Tutte’s embedding
method. It computes the parameterization by solving a linear system
wherein each vertex is represented as a positive-weighted average of
its one-ring neighbors. This is guaranteed to obtain flipless parame-
terization in cases where the mesh boundary is fixed to a convex
shape. In our implementation, we also employ it to obtain a foldover-
free initialization.

Challenges. However, the energy is numerically difficult to opti-
mize, leading to numerous iterations and high computational cost.
Our key observation is that the initialization generated by the Tutte’s
method usually contains extremely large distortion in some triangles
due to the fixed boundary constraints. If the solver starts solving (5)
with this initialization, these large distortions may lead to insuffi-
cient energy descent in the first several iterations, causing very slow
convergence or even early entrapment by a local minimum. This
is the main challenge in achieving high-quality parameterizations
with high efficiency and practical reliability. To this end, we have
developed an efficient and reliable method to solve (5).

3.3 Our method
Key idea. Our key idea is to reduce the distortions of highly

distorted triangles up to some bound K > 1. We observe that if
the distortions of all triangles are bounded by K , then only a few
iterations in the optimization of (4) are necessary to obtain a good
result; thus, we can significantly reduce iterations, resulting in fast
convergence. By observing that the distortionD(fri , f

p
i ) is dependent

on the reference triangle fri , we seek to find appropriate reference
triangles to bound D(fri , f

p
i ).

Construction of new reference triangles. Given a triangle fpi that has
a large distortion, i.e, D(fi , f

p
i ) > K , we aim to bound its distortion.

Our goal is to find a triangle in between fi and fpi as the reference
fri for each i . To this end, we first interpolate a new Jacobian Ji (t)

between its Jacobian J1i := Ji = UiSiV
T
i and its optimum J0i =

Ui IV
T
i using a parameter t ∈ [0, 1] (Ji (0) = J0i , Ji (1) = Ji ) to contain

the bounded distortion, i.e., D(Ji (t)) ≤ K . Then, the vertices of the
new reference triangle fri = △v

r
i,0v

r
i,1v

r
i,2 are constructed as:

vri, j (t) = J−1i (t) v
p
i, j , j = 0, 1, 2. (6)

There are many possible ways to interpolate Ji (t) between J0i
and J1i (see more discussions in Section 4.1). We adopt the methods
proposed in [Alexa 2002; Grassia 1998; Rossignac and Vinacua 2011]
to compute Ji (t) via interpolating the exponential function:

Ji (t) = Ui diag(σ ti ,τ
t
i )V

T
i , t ∈ [0, 1]. (7)

The bounded distortion constraint requires:

D(Ji (t)) =
1
4

(
σ 2t
i + σ

−2t
i + τ 2ti + τ

−2t
i

)
≤ K , t ∈ [0, 1]. (8)

0 4 8 12 16 20
0

0.7

1.4

2.1
log(E(M,Mp))

#iter

Individual ti
Common tcom

Fig. 3. Different choices of t . The middle figure shows the generated param-
eterization on a fish model (16428 triangles) using the common t com, which
is similar to the obtained parameterization via the individual ti . The graph
shows the distortion energy as a function of the number of iterations.

As the gradient of D(Ji (t)) with respect to t ∈ [0, 1] is always pos-
itive, D(Ji (t)) is a strictly increasing function. Thus, for each indi-
vidual triangle, we compute the maximum parameter ti by solving
the equation via the Newton-Raphson method:

1
4

(
σ 2ti
i + σ−2tii + τ 2tii + τ−2tii

)
= K . (9)

For the triangles that already have small distortions that are less
than K , i.e., D(Ji (t)) ≤ K , we set ti = 1.

Note that ti is different for various triangles f
p
i . To guarantee con-

sistency, we choose a common parameter to serve as the minimum
of ti for all triangles:

tcom = min
1≤i≤Nf

{ti }. (10)

Then, we use Eq. (7) to compute Ji (t
com). This is also used to de-

termine the new reference triangle fri via Eq. (6). Fig. 3 shows an
experimental comparison between the common tcom and the indi-
vidual ti . This comparison shows that the former is slightly more
efficient than the latter.

Updating parameterizations. With the new reference triangles fri
(and thus the newMr), we obtain a new parameterizationMp

new by
solving (4). It is worth pointing out that we set the uniform weights
ωi =

1
Nf

in (4) instead of the area of the triangle that is used in (5).
As our goal is to reduce the distortions on the triangles, we expect
that the distortion in each individual triangle is reduced equally.
Otherwise, the triangles with large distortions but small areas may
suffer from distortions that cannot be sufficiently reduced during
the optimization. This equal treatment ensures that the number of
convergence iterations in our method is resistant to various tessella-
tions in one surface with almost the same cuts (see Fig. 9). Besides,
some constructed reference triangles do possess very small areas,
which causes numerical instability.

3.4 Algorithm
After achievingMp

new, we updateMp =Mp
new. Then, the above

procedure can be conducted iteratively. Algorithm 1 gives the pseu-
docode of our method. The termination condition also indicates
Mr =M. The details of the algorithm, including the solvers of (4)
and (5), etc. , are discussed in the next sections. An example is shown
in Fig. 4 to illustrate the iteration process.
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(a1)M

(a2)Mp
0

(b1)Mr
0

(b2)Mp
1

(c1)Mr
1

(c2)Mp
2

(d1)Mr
n

(d2)Mp
n+1

(e1)

(e2)Mp
c

Fig. 4. The iteration process of our method. Here, we useMp
n andMr

n to represent the parameterized mesh and the reference triangles at the nth iteration,
respectively. SinceMp

n+1 does not satisfy the condition of the while loop of Algorithm 1, our method exits it and starts solving (5). The texture mapping is
shown in (e1) using the convergence parameterizationMp

c (e2).

Algorithm 1: Progressive parameterization
Input :3D triangular meshM = {fi , i = 1, · · · ,Nf}
Output :2D parameterizationMp = {fpi , i = 1, · · · ,Nf}
Initialization: fpi ← TutteEmbedding ofM ;
while ∃i,D(fi , fpi ) > K do

tcom ← CommonParameter via Eq. (10);
fri ← UpdateReferences via Eq. (6);
fpi ← UpdateParameterization via (4);

end
fpi ← FinalOptimization via (5);

The reference triangles are interpolated between the ideal refer-
ence triangles and the parameterized triangles. Once the parameter-
ized triangles are updated by solving (4), we re-construct the new
reference triangles between the updated parameterized triangles
and the ideal triangles. The new reference triangles progressively
approach the ideal triangles untilMr =M.

3.5 Hybrid solver
Solver choices. To solve (4) and (5), the existing solvers, e.g., SLIM [Ra-

binovich et al. 2017] or CM [Shtengel et al. 2017], can be utilized;
however, they have their own characteristics. The SLIM solver con-
ducts a reweighting scheme that could penalize the maximum dis-
tortion effectively, but it has a poor convergence rate. Thus, the
SLIM solver is suitable for reducing serious distortion at the be-
ginning of the distortion minimization. The CM solver contains an
approximated Hessian matrix to make it converge quickly; however,
it has no ability to reduce large distortion within a few iterations
at the beginning of the optimization. Therefore, the CM solver can
be used for quick convergence after significant distortion has been
eliminated. Consequently, we utilize the SLIM solver in first several
iterations, and then use the CM solver in the remaining optimization.

Conditions for solver change. For all of the examples in our ex-
periments, when 99% of the triangles satisfy D(fi , f

p
i ) ≤ K or the

relative error of E(M,Mp) is less than 10−1, we stop the SLIM
solver and start the CM solver. The relative error of E(M,Mp) at
the nth iteration is defined as:

en =
|E(M,M

p
n−1) − E(M,M

p
n )|

E(M,M
p
n )

, n > 1, (11)

whereMp
n is the parameterized mesh at the nth iteration, and en

is set as a large positive value (e.g., 1000). When en < 10−1, this
indicates that the SLIM solver was not able to rapidly reduce the
energy any further. If 99% of the triangles are with D(fi , f

p
i ) ≤ K ,

then most of the triangles contain bounded distortions; therefore the
large distortion penalization effect of the SLIM solver is not notable.
As a result, once one of them is satisfied, we replace the SLIM solver
with the CM solver. If the initializations satisfy D(fi , f

p
i ) ≤ K ,∀i ,

our method is exactly the same as the CM method, meaning that
our hybrid solver is more efficient than the individual ones (see the
comparisons in Fig. 11). Judging from the extensive evaluations in
Section 4.2, our solver’s change conditions perform well in practice.

3.6 Implementation details and discussions
Initialization. The parameterization meshMp is initialized with

Tutte’s embedding algorithm, which mapsM to a unit circle with
uniform weights. Then,Mp is scaled so that it has the same area as
M. The scale is

√
|M|/π , where |M| indicates the area ofM, and π

is the area of the unit circle. One may use the cotangent weights for
Tutte’s embedding algorithm when they happen to be positive. In
Fig. 5, we parameterize a model using them. Their slight difference
indicates that our method is insensitive to these two weights.

Note that the reference code of [Shtengel et al. 2017] tries to scale
the initialMp by reducing E(M,Mp). This scale would increase
the speed for some models; however, it is not robust. If the initial
Mp contains nearly degenerate triangles, then the scale would be
extremely large (e.g., approximately 5 × 105 for one model in our
experiments). This is due to the substantially large distortions on
nearly degenerate triangles. Then, theMp may become so large
that the solvers could hardly decrease the energy.
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log(E(M,Mp))

#iter
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Fig. 5. The different weights for Tutte’s embedding algorithm. The female
model contains 19012 triangles. The graph shows the log(E(M,Mp)) vs.
the iteration number.

Step size. In each iteration of the SLIM or CM solvers, we first
compute a maximal non-inverting step size αmax, according to the
method of [Smith and Schaefer 2015]. Then, we perform a standard
Armijo backtracking algorithm to determine the step size, which is
initialized as α := min{1, 0.9αmax}. The parameterized triangles are
all ensured to be foldover-free in each iteration of our algorithm.

Convergence conditions of (5). The optimization of (5) terminates
when one of following conditions is satisfied: (i) en < 10−6; (ii) the
norm of the gradient is less than 10−6.

Distortion bound K . K indicates the maximum allowable distor-
tion distance between fri and fpi . A small value of K shows that
D(fi , f

p
i ) will be reduced slightly, which causes many more itera-

tions. A large one may cause great difficulties in distortion descent,
as fi is always treated as the reference triangle. In our experiments,
we select a moderate value and set K = 60 for all models.

Practical termination conditions. As stated before, the condition of
the while loop of Algorithm 1 is set as: ∃i,D(fi , fpi ) > K . However,
this condition is so strict that our method may require additional
meaningless iterations to satisfy it. Therefore, we have relaxed it
in practice. In our implementation, if 99% of the triangles satisfy
D(fi , f

p
i ) ≤ K or en < 10−2, we exit the while loop and start solv-

ing (5). The first condition shows that almost no triangles exhibit
large distortions. The second one indicates that the new reference
did not significantly reduce the distortion.

One iteration in solving (4). In principle, we should solve (4) until
convergence for a constructed reference. Nevertheless, the employed
solvers (i.e., the SLIM and CM solvers) make a very large step size
when the optimized distortion on each triangle is below K . Thus,
given a constructed reference, we updateMp by one step of energy
descent. In Fig. 6, we show a comparison between the optimizations
using convergence and one iteration for (4). Although the conver-
gence optimization achieves lower distortion energy than the single
iteration optimization, its iterations are much higher, leading to
much greater computational cost for the whole algorithm.

Other requirements of parameterizations. Our method generates
low isometric distortion parameterizations. However, if other dis-
tortion requirements are emphasized by users, we can add a post-
processing step to satisfy them. For example, if low conformal dis-
tortion is required, the conformal AMIPS energy [Fu et al. 2015] can

0 30 60 90 120 150 180
0

3

6

9
log(E(M,Mp))

#iter

Convergence
One Iteration

Fig. 6. A comparison of two optimization strategies for solving (4) with a
constructed reference. The comparison is conducted by computing parame-
terizations on a mesh of a woman (43816 triangles). Since the final results
are similar, we show the obtained result using the single iteration scheme
in the middle. The graph plots log(E(M,Mp)) vs. iteration number.

be minimized. When the maximum isometric distortion requires pe-
nalization, the exponential symmetric Dirichlet energy [Rabinovich
et al. 2017] can be applied.
Our method can be extended to support other constraints, e.g.,

bijection. For example, we could incorporate our method into [Jiang
et al. 2017] to replace their solver for computing the bijective results
with higher efficiency.

4 EXPERIMENTS
Our method generates foldover-free and low isometric distortion
parameterizations with strong practical robustness and high effi-
ciency. We select the scalable locally injective maps (SLIM) [Ra-
binovich et al. 2017], the approximate Killing vector field method
(AKVF) [Claici et al. 2017], and the composite majorization method
(CM) [Shtengel et al. 2017] as the competitors. The competing meth-
ods are reimplemented for fair comparisons. The accuracy is verified
by performing comparisons between the reference codes provided
by the authors and our reimplementations. The comparison re-
sults ensure that our implementation is correctly confirmed. The
competitors also optimize symmetric Dirichlet energy E(M,Mp)
and use the same initializations and convergence conditions as our
method. Except for the convergence conditions introduced in Sec-
tion 3.6, our standard practice is to terminate the algorithm when
the iteration number reaches its maximum, which is set at 5000
in our experiments. The number of iterations in our method is
the same as the number of times of the linear solve. We employ
the PARDISO solver [Petra et al. 2014a,b; Schenk et al. 2007] for
the linear solve in our method and the competitors. Our experi-
ments were performed on a desktop PC with a 4.0 GHz Intel Core
i7-4790K and 8 GB of RAM. Table 1 summarizes the comparison
results. The C++ implementation for optimizing the symmetric
Dirichlet energy and the benchmark data set are publicly accessible
at http://staff.ustc.edu.cn/~fuxm/projects/ProgressivePara/.

Distortion metrics. To determine the quality of the parameteriza-
tions and compare them with other methods, we use the conver-
gence energy E(M,M

p
c ), whereM

p
c is the convergence parame-

terized mesh. To make E(M,Mp
c ) comparable for different models

and various methods, it is weighted using the inverse of the area of
meshM. This is denoted as Ec := E(M,M

p
c )/|M|, where |M| is
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the area ofM. Also, the color of the triangles from the parameter-
ized meshes are encoded via the symmetric Dirichlet energy metric
D(fi , f

p
i ), with white being optimal.

Iteration count and running time. We report the convergence
iteration count Nc and convergence time tc for every mesh and
method. We do not optimize E(M,Mp) in every iterations, but
log(E(M,Mp)) is still plotted in the energy vs. time and energy vs.
iteration number graphs. To make the running time comparable
between various methods, we exclude the time required to construct
the initial parameterization, which is required only once.
To determine the speed of achieving a low distortion result, we

compute the number of iterations η as follows:
min n

s.t. E(M,M
p
n ) − Ec

Ec
≤ ε, 1 ≤ n ≤ Nc,

(12)

where ε is an indicator of similarity betweenMp
n andMp

c (we set
ε = 0.01). A small η indicates that the approach achieves a result that
is close to the convergence result with a small number of iterations
(smaller η is better).

4.1 Evaluations and comparisons
Other reference triangle construction methods. Other construction

methods of reference triangles could be used in our framework. We
have considered two other approaches for generating σi (t) and τi (t)
to define Ji (t) = Ui diag(σi (t),τi (t))VT

i .
• The first one is based on a linear function:

σi (t) = tσi + (1 − t), τi (t) = tτi + (1 − t). (13)

Using this interpolation, D(Ji (t)) is also strictly increasing
with respect to t when t ∈ [0, 1] and D(fi , f

p
i ) > K > 1. Thus,

we also use the Newton-Raphson method to compute ti for
fi and choose the smallest one for all of the triangles.
• The second one is computed by projection.

min
σi (t ),τi (t )

(σi (t) − σi )
2 + (τi (t) − τi )

2

s.t. 1
4

(
σ 2
i (t) + σ

−2
i (t) + τ

2
i (t) + τ

−2
i (t)

)
≤ K ,

σi (t) > 0, τi (t) > 0.

(14)

The resulting σi (t) and τi (t) are the projections of σi and
τi onto the bounded distortion space. However, solving (14)
is costly and difficult. Thus, by taking a convex subspace
from the constrained space, we generate the projection-based
interpolation method.

min
σi (t ),τi (t )

(σi (t) − σi )
2 + (τi (t) − τi )

2

s.t.
(
σ 2
i (t) + σ

−2
i (t)

)
≤ 2K , σi (t) > 0 > 0,(

τ 2i (t) + τ
−2
i (t)

)
≤ 2K , τi (t) > 0.

(15)

Here, the constraints
(
x2 + x−2

)
≤ 2K , x > 0 are equivalent

to (K −
√
K2 − 1)

1
2 ≤ x ≤ (K +

√
K2 − 1)

1
2 , which are convex.

Therefore, problem (15) is a convex quadratic programming,
and it is very easy to solve σi (t) and τi (t).
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Fig. 7. Comparison with other affine transformation interpolation meth-
ods using a cow mesh (46504 triangles). We show the final parameteriza-
tion generated by our exponential scheme in the middle. The graph plots
log(E(M,Mp)) vs. iteration number.
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Fig. 8. Four different initializations for parameterizing a woodman model
(25902 triangles): (a) triangle, (b) square, (c) octagon, and (d) circle. The
graph shows log(E(M,Mp)) vs. number of iterations.

We show a comparison with these interpolation methods in Fig. 7.
Ourmethod, which is based on exponential function, is slightly more
efficient. At the beginning of the optimization process, the linear
interpolationmethod generates a very small value for ti as compared
to exponential interpolation, which is due to the large distortion. A
small ti value makes the interpolated reference triangles too close
to the current parameterized triangles, causing some redundant
iterations and slowing down the convergence. In our experiments,
the common tcom strategy performs slightly better than the different
ti strategy in most cases. The projection method projects affine
transformations onto the boundary of the constrained space, just as
our interpolation method uses the different ti strategy. Thus, it may
spend more time.

Various initializations. In Fig. 8, we parameterize the same model
with four initializations by mapping the input mesh onto different
convex polygons via Tutte’s embedding method [Tutte 1963]. The
plotted graph indicates that our method converges after a similar
number of iterations (36 for the triangle, 29 for the square, 32 for
the octagon and 29 for the circle). This shows that our method is
insensitive to various initializations.

Various tessellations. The uniform weight in E(Mr,Mp) makes
the iteration number of our method similar for one surface that
has nearly identical cuts but different tessellations. In Fig. 9, five
types of tessellations representing one surface are parameterized.
Our method converges after almost the same number of iterations
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(a) Source (b) Isotropic (c) Anisotropic (d) Nonuniform (e) Random (f)

Source
Isotropic
Anisotropic
Nonuniform
Random

log(E(M,Mp))

#iter

Fig. 9. Various tessellations. Five types of tessellations are included: (a) source; (b) isotropic; (c) anisotropic; (d) nonuniform; (e) random. The rightmost graph
(f) plots log(E(M,Mp)) vs. number of iterations. The anisotropic mesh is generated by the LCT method [Fu et al. 2014].
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Fig. 10. Scalability test for four approaches including SLIM, AKVF, CM, and
our method. A Teddy surface is represented by the meshes of increasing
resolutions (25082, 100328, 401312, 1605248, and 6420992 triangles) is em-
ployed. The left graph shows the number of iterations vs. log(Nf), and the
right graph plots running time (in seconds) vs. log(Nf).

and generates low isometric distortion parameterizations for all
models. We report the statistics for SLIM, AKVF, and CM in Table 1.
Especially with regard to the anisotropic one, the competitors use
many more iterations (4253 for SLIM, 1151 for CM, and only 52 for
ours) and much more time to converge (223.554 seconds for SLIM,
64.309 seconds for CM, and only 3.215 seconds for ours). AKVF does
not converge within 5000 iterations.

Scalability. A progressive Teddy model with between 25K and
6421K faces is parameterized to compare with the competitors
(Fig. 10). For our method and CM, Nc is almost constant for all
of the models; however, our method uses about 53.46% of the itera-
tions required by CM (left graph in Fig. 10). The SLIM and AKVF
methods require even more iterations as the resolution increases.
The right graph in Fig. 10 indicates that our method scales much
better than the competitors with regard to high resolution meshes.

Improving existing algorithms. The existing approaches could be
improved by using our progressive reference to increase efficiency
and practical robustness, denoted as P-CM, P-SLIM, and P-AKVF.
An example is shown in Fig. 11. From Fig. 11 (b), although the
technique improves the CM, the energy descent rate in the first
several iterations is still very slow. From Fig. 11 (c), it can be seen
that our technique makes the SLIM decrease the energy very quickly
at the beginning. However, its convergence rate is very poor, i.e., the
P-SLIM does not terminate even after the 20th iterations while our
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Fig. 11. Improvement of existing methods using our new reference. The
parameterization is conducted on a vase model (395328 triangles). (a) the
resulting parameterization. The graphs (b - d) show log(E(M,Mp)) vs.
number of iterations.

hybrid solver stops at the 15th iteration. The AKVF is also improved
significantly by our method (Fig. 11 (d)).

Efficiency comparison. We use one model in Fig. 1 and five models
in Fig. 12 to compare the levels of efficiency. Our approach out-
performs the competitors. As seen in the plotted graphs, the SLIM
usually suppresses the maximum distortion seriously at the begin-
ning; however, it necessitates manymore iterations to converge. The
AKVF method is not robust to various cuts. For example, since the
cut does not reach the two fingers of the woman model (Fig. 12 (b)),
it converges slowly. Although the CM method converges quickly,
the several iterations required in the beginning are still not able
to adequately reduce distortion. Due to the bounded distortions
between the constructed reference and the parameterized triangles,
our method achieves a very low energy after an almost constant
number of iterations for various models (see the η value in Table 1).

4.2 Benchmark
To verify that our method is practically robust and efficient for var-
ious complex disk topology meshes, we construct a large testing
benchmark containing 20712 meshes. This benchmark starts from
well cut meshes D1, continues with moderately bad ones D2, and
ends with extremely challenging examples D3. The construction of
D1, D2, and D3 use the genus-zero closed meshes, which are pro-
vided by [Hu et al. 2018] and already contain various triangulations
for one surface. We will release the complete data set in the future.

Well cut mesh setD1. We use the former methods [Gu et al. 2002;
Sheffer 2002; Sheffer and Hart 2002] to generate D1. To test the
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Fig. 12. Efficiency comparisons. Six models are used for comparisons. The graphs in the first row show the log(E(M,Mp)) vs. number of iterations, and the
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Fig. 13. Parameterizations of six models from the benchmark. The left, middle, and right two models are from D1, D2, and D3, respectively.

scalability, we subdivide the small sized meshes to augment the data
set. In total, there are 10273 meshes in D1.

Bad cut collectionD2. Given a genus-zero closedmeshM, we first
select n as far as possible vertices Q, and then construct the minimal
spanning tree following the model of [Sheffer 2002] between these
vertices to define the cut. We initially set Q = ∅, and add the vertex
with the least distance to the lower left front corner of the bounding
box ofM into Q. Then, we iteratively add the vertex vk with the
largest

∑
qi ∈Q Dist(vk , qi ) into the Q until Q has n elements. Here,

Dist(x1, x2) is the Euclidean distance between x1 and x2. In our
experiments, we choose n = 5, 9, 13 to constructD2, which contains
6189 single patch meshes all together.

Extremely challenging cases D3. We first randomly select one
face as the seed on the input genus-zero closed meshM. Then, we
generate a patch P by propagating this seed using a width-first
search strategy once the ratio between the number of faces on P
andM is greater than β . Finally, we addM \ P into D3 if it is a
manifold. We select β = 30%, 50%, 70% in our implementation. To
further increase the challenge, we select half of D3 to perform the
data augmentation. For each vertex vk from one selected model
M, we position it at a random point within the sphere, where the
center is the original position of vk and the radius is the length of
one random edge in one-ring of vk . Then, we replaceM with the
randomly perturbed mesh. In short, there are 4250 models in D3.

Benchmark results. Since the performance gains in our method
could originate from either the hybrid solver or the progressive ref-
erences, we have added two additional methods to pinpoint the pri-
mary source of these performance gains. One method is to solve (5)
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Fig. 14. Distributions of EOurs
c . The maximum, average, and standard devia-

tion of EOurs
c over all the meshes in one data set are denoted as Emax, Eavg,

and Estd, respectively.
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Fig. 15. Distributions of θ .

via our hybrid solver, denoted as HYBRID. The other method is
the above mentioned P-CM that combines the CM solver and our
progressive references. We then ran the three competitors, the two
additional methods, and our method on the three data collections.
The low isometric distortion parameterizations for the six models
using our method are shown in Fig. 13.
We denote the convergence energies of SLIM, AKVF, CM, HY-

BRID, P-CM and ours as ESLIMc , EAKVFc , ECMc , EHYBRID
c , EP-CMc , and
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Fig. 16. Distributions of Nc. From the top, each successive row represents
the results of SLIM, AKVF, CM, HYBRID, P-CM, and our method. The
number of models within Nc > 100 in one collection is denoted as N c
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tvavg = 0.167
tvmax = 2.792
tv>0.4 = 484

tvavg = 0.124
tvmax = 0.992
tv>0.4 = 242

tvavg = 0.111
tvmax = 1.035
tv>0.4 = 193

tvavg = 0.446
tvmax = 7.490
tv>0.4 = 2616

tvavg = 0.243
tvmax = 9.179
tv>0.4 = 1135

tvavg = 0.105
tvmax = 6.846
tv>0.4 = 108

tvavg = 0.108
tvmax = 1.478
tv>0.4 = 215

tvavg = 0.067
tvmax = 0.591
tv>0.4 = 12

tvavg = 0.059
tvmax = 0.540
tv>0.4 = 6

tvavg = 0.631
tvmax = 6.171
tv>0.4 = 6317

tvavg = 0.125
tvmax = 15.820
tv>0.4 = 433

tvavg = 0.077
tvmax = 0.690
tv>0.4 = 23

tvavg = 0.064
tvmax = 0.963
tv>0.4 = 19

tvavg = 0.062
tvmax = 0.436
tv>0.4 = 4

tvavg = 0.049
tvmax = 0.496
tv>0.4 = 1

Fig. 18. Distributions of t v. From the top, each successive row represents the
results of SLIM, AKVF, CM, HYBRID, P-CM, and our method. The number
of models within t v > 0.4ms in one collection is denoted as t v>0.4.

EOursc , respectively. The averages of ESLIM
c
EOurs
c

, EAKVF
c
EOurs
c

, ECM
c

EOurs
c

, EHYBRID
c
EOurs
c

,

and EP-CM
c
EOurs
c

over all the meshes are 1.0006, 1.0002, 1.0000, 1.0000
and 1.0000, respectively. Their standard deviations are 1.47 × 10−3,
8.85 × 10−4, 7.74 × 10−4, 5.65 × 10−4, and 8.13 × 10−4, respectively.
Thus, the result quality produced by all methods is almost the same.
The histograms of our results from the three collections are shown
in Fig. 14.
The number of the times of constructing reference triangles is

denoted as θ . Its maximum, average, and standard deviation over
all the meshes in one data set are denoted as θmax, θavg, and θstd,
respectively. The histograms in Fig. 15 show the distributions of θ .
We count all Nc and η in all the meshes, and denote their aver-

age and maximum as Navg,ηavg and Nmax,ηmax. Since the running
time is affected by the size of the mesh, it is weighted with the
inverse of vertex number, which denoted as tv := tc/Nv. The aver-
age and maximum of tv are denoted as tvavg and tvmax. We illustrate
Nc (Fig. 16), η (Fig. 17), and tv (Fig. 18) via histograms. From the
statistics, it is apparent that P-CM outperforms HYBRID, indicating
that our progressive reference generates higher performance gains
than the hybrid solver. Our method outperforms the other meth-
ods according to all of these metrics. Besides, our method uses at
most 20 iterations to achieve a result that is 1% different from the
convergence result for the well cut models (see our maximum η in
both Fig. 17 and Table 1).
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Table 1. Statistics and timings for parameterizations. Although not all the
results of the competitors are shown in each figure, we have reported their
statistics here. A number in boldface emphasizes the best result for each
comparison. We have omitted the experiments that did not converge within
5000 iterations.

Model Ours CM AKVF SLIM
Name Nv/Nf (×103) Nc/η/tc(s) Ec Nc/η/tc(s) Ec Nc/η/tc(s) Ec Nc/η/tc(s) Ec

Fig. 1 900/1792 48/9/123.249 1.047 92/26/229.509 1.047 198/65/486.879 1.047 384/40/889.649 1.048
Fig. 3 8/16 15/6/0.201 1.011 20/11/0.247 1.011 91/65/1.014 1.011 450/123/4.899 1.011
Fig. 6 23/44 25/9/0.942 1.023 48/22/1.555 1.023 81/46/2.430 1.023 507/46/14.815 1.024
Fig. 7 24/47 20/9/0.831 1.017 35/20/1.319 1.017 50/25/1.739 1.017 344/33/11.347 1.017
Fig. 8 (a) 13/26 36/17/0.781 1.035 100/70/1.948 1.036 80/61/1.441 1.035 –/–/– –
Fig. 8 (b) 13/26 29/15/0.626 1.035 81/59/1.584 1.035 72/43/1.291 1.035 390/45/6.725 1.036
Fig. 8 (c) 13/26 32/8/0.694 1.035 77/16/1.502 1.035 70/45/1.257 1.035 224/41/3.869 1.036
Fig. 8 (d) 13/26 29/8/0.631 1.035 80/16/1.564 1.035 59/41/1.057 1.035 180/24/3.111 1.036
Fig. 9 (a) 32/63 29/8/1.792 1.028 58/21/3.305 1.028 260/146/13.713 1.028 557/301/28.443 1.033
Fig. 9 (b) 29/56 21/8/1.351 1.024 38/18/2.155 1.024 36/19/1.902 1.024 240/14/12.027 1.024
Fig. 9 (c) 31/60 52/20/3.215 1.032 1151/24/64.309 1.032 –/–/– – 4253/3685/223.554 1.066
Fig. 9 (d) 14/27 23/9/0.522 1.027 42/19/0.857 1.027 157/119/2.850 1.027 833/203/14.331 1.027
Fig. 9 (e) 16/31 39/12/1.004 1.267 92/24/2.155 1.267 182/106/3.967 1.267 658/209/13.912 1.269
Fig. 10 - 1 13/25 13/7/0.299 1.029 41/9/0.859 1.029 42/6/0.835 1.029 130/9/2.374 1.030
Fig. 10 - 2 51/100 19/7/2.062 1.029 36/9/3.679 1.028 31/6/3.032 1.029 183/10/16.744 1.029
Fig. 10 - 3 202/401 24/7/12.864 1.028 31/9/15.823 1.028 52/7/25.494 1.028 175/12/80.862 1.028
Fig. 10 - 4 805/1605 30/8/84.506 1.028 45/10/122.659 1.028 82/12/220.026 1.028 198/12/508.401 1.028
Fig. 10 - 5 3215/6421 24/8/436.976 1.028 62/10/1100.326 1.028 152/15/2666.282 1.028 237/15/3972.247 1.028
Fig. 11 199/395 15/7/7.535 1.024 29/13/13.693 1.024 44/15/20.040 1.024 139/14/59.785 1.025
Fig. 12 (a) 195/382 35/11/13.868 1.021 76/37/27.422 1.021 89/34/30.411 1.021 895/142/297.864 1.022
Fig. 12 (b) 12/22 49/12/0.935 1.036 126/38/2.170 1.036 101/70/1.636 1.036 587/87/9.099 1.036
Fig. 12 (c) 31/60 25/11/1.695 1.005 92/66/5.104 1.005 79/71/3.959 1.005 2677/2310/132.544 1.005
Fig. 12 (d) 58/111 49/10/5.176 1.057 120/34/11.655 1.057 102/46/9.357 1.057 1002/131/89.029 1.059
Fig. 12 (e) 259/512 38/10/22.238 1.030 93/24/51.295 1.030 70/23/37.605 1.030 477/32/248.781 1.031
Fig. 13 (a1) 227/447 31/10/17.569 1.020 57/33/29.969 1.020 47/22/23.822 1.020 242/17/118.182 1.020
Fig. 13 (a2) 13/26 65/10/1.409 1.041 121/15/2.435 1.041 187/89/3.446 1.041 1182/107/20.919 1.042
Fig. 13 (b1) 153/302 41/9/13.229 1.044 84/23/25.343 1.044 54/22/15.423 1.044 298/28/80.940 1.045
Fig. 13 (b2) 10/19 19/9/0.289 1.182 37/19/0.502 1.182 52/24/0.652 1.182 136/18/1.590 1.182
Fig. 13 (c1) 22/44 14/9/0.688 1.823 29/21/1.216 1.823 84/49/3.309 1.823 100/24/3.745 1.823
Fig. 13 (c2) 34/67 23/11/1.916 1.633 52/25/3.797 1.633 67/43/4.781 1.633 191/15/12.621 1.633

(b) Initialization

(c) CM (d) AKVF (e) P-AKVF

(h)

(a) Source

(f) Ours

(g) SLIM
Fig. 19. A stress test on a Hilbert-curve-shaped developable surface (a).
Starting from the same bijective initialization (b), the symmetric Dirichlet
energy is optimized. The figures (c - g) show snapshots of the state each
method achieves at the 15th iteration. The texture mapping in (a) is based
on the initial parameterization (b). We also show the texture mapping in (h)
using the parameterization result (e).

5 CONCLUSION
Our method provides a novel and simple way to generate low iso-
metric distortion parameterizations without foldovers. Due to the
use of a new reference producing a bounded objective function, our
method explicitly avoids optimizing the extremely large distortion
during the whole optimization process, thereby exhibiting strong
practical reliability and high efficiency. We have demonstrated the
practical robustness and advantages of our method on a large data
set containing 20712 models.

Hybrid solver. Our hybrid solver first uses the SLIM solver and
then the CM solver. The speed at which our method converges
depends on the convergence rate of the CM solver. In Fig. 19, we
perform a stress test, which is similar to [Rabinovich et al. 2017;
Smith and Schaefer 2015], on a Hilbert-curve-shaped developable

surface. Although our method significantly reduces the distortion
during the first several iterations, it uses 119 iterations to reach the
global minimum. The SLIM does not reach the global minimum
within 5,000 iterations. The CM uses 132 iterations, but the AKVF
only requires 22 iterations. If our progressive reference is incor-
porated into the AKVF, i.e., P-AKVF, we are able to achieve the
global minimum in a total of 15 iterations. This indicates that our
progressive reference is indeed useful. In the future, an interesting
topic for research would be to develop a more suitable and efficient
solver for our progressive reference.

(a) (b)
Without constraints With constraints

Handle setting

Deformation result

Fig. 20. Two geometric applications with constraints. (a)Global seamless
parameterization with rotations on the seams that have been extracted
from a cross field. (b) Mesh deformation.

Other applications with constraints. To handle the prescribed con-
straints, we treat them as soft constraints [Rabinovich et al. 2017;
Shtengel et al. 2017]. In this manner, the constraints are gradually
satisfied by increasing the weights of the soft constraint energy
terms during the optimization. In Fig. 20, we show an example of
global seamless parameterization [Bommes et al. 2009] and an ex-
ample of mesh deformation. In these two examples, we choose the
CM as the competitor. For the global seamless parameterization, the
Nc and tc of the CM and our method are (48, 4.744s) and (35, 3.884s),
respectively. For the mesh deformation, the Nc and tc of the CM and
our method are (97, 2.395s) and (71, 1.802s), respectively. In these
two applications, the performance gain of our method is not as high
as in the parameterizations. Although high distortion is present in
the deformation, it is not extreme, and our progressive references
exhibit a slight acceleration. Therefore, pairing our method with
soft constraints does not yield much higher performance gains than
other methods with boundary or positional constraints.

Theoretical guarantee to reduce E(M,Mp). As only E(Mr,Mp)
is optimized to driveMp to approachM in some iterations, we
have no theoretical guarantee to consistently reduce E(M,Mp).
For one triangle fi , if the optimization of E(Mr,Mp) satisfies the
following conditions, D(fi , f

p
i ) decreases.

a21 + a
−2
1 ≤ b21 + b

−2
1 , a22 + a

−2
2 ≤ b22 + b

−2
2 . (16)

b1 and b2 (b1 > b2) are the singular values of Ji (fri , f
p
i ) before the

optimization. After the optimization, they are denoted as a1 and
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a2 (a1 > a2). We have provided a proof in the supplementary ma-
terial. Because E(Mr,Mp) includes the distortions of all triangles,
its optimization cannot ensure that all triangles satisfy the con-
straints (16). Even then, as fri is between fi and f

p
i and our optimiza-

tion of E(Mr,Mp) tries to reduce the isometric distortion between
fri and f

p
i as much as possible, our method still succeeds in making fpi

approach fi in practice. Therefore, our method achieves high-quality
parameterizations with strong practical robustness.

Progressive idea. The idea of applying a progressive process to
solve problems is actually more general. For example, it may be a
more practical way to make a progressive movement to the desired
positions in handle-based deformation [Schüller et al. 2013]. Thus,
adopting the progressive strategy for other applications would be
an intriguing direction for future research.
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