Ruiqi Ni

2400 Northwestern Ave, West Lafayette, IN, USA ni117@purdue.edu • +1 (850) 755 3166

EDUCATION Purdue University, West Lafayette, IN, USA

Ph.D. in Computer Science Jan 2022 – Present

Florida State University, Tallahassee, FL, USA

Graduate Studies in Computer Science Aug 2019 – Dec 2021

University of Science and Technology of China, Hefei, Anhui, China

B.S. in Information and Computing Science Sep 2014 – Jun 2018

RESEARCH INTERESTS

Robot Learning; Motion Planning and Control; Physics-based Simulation

PUBLICATIONS "S

"SE(3)-NTFields: Physics-informed Neural Time Fields for Prehensile Object Manipulation",

Hanwen Ren, Ruigi Ni, Ahmed H. Qureshi.

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2025.

"Physics-informed Neural Motion Planning via Domain Decomposition in Large Environments", Yuchen Liu, Alexiy Buynitsky, **Ruiqi Ni**, Ahmed H. Qureshi. *IROS*, 2025.

"Physics-informed Temporal Difference Metric Learning for Robot Motion Planning",

Ruiqi Ni, Zherong Pan, Ahmed H. Qureshi.

Intl. Conf. on Learning Representations (ICLR), 2025.

"Physics-informed Neural Mapping and Motion Planning in Unknown Environments",

Yuchen Liu*, **Ruiqi Ni***, Ahmed H. Qureshi.

IEEE Trans. on Robotics (T-RO), 2025.

"Physics-informed Neural Motion Planning on Constraint Manifolds",

Ruiqi Ni, Ahmed H. Qureshi.

IEEE Intl. Conf. on Robotics and Automation (ICRA), 2024.

"Progressive Learning for Physics-informed Neural Motion Planning",

Ruigi Ni, Ahmed H. Qureshi.

Robotics: Science and Systems (RSS), 2023. (Workshop Oral)

"NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning",

Ruiqi Ni, Ahmed H. Qureshi.

ICLR, 2023. (Spotlight; Workshop Best Paper)

"Multi-Robot Path Planning in Complex Environments via Graph Embedding",

Xifeng Gao, Zherong Pan, Ruigi Ni.

IEEE Robotics and Automation Letters (RA-L), 2022.

"Robust Multi-Robot Trajectory Optimization Using Alternating Direction Method of Multiplier",

Ruiqi Ni, Zherong Pan, Xifeng Gao.

IEEĒ RA-L, 2022.

"Robust & Asymptotically Locally Optimal UAV-Trajectory Generation Based on Spline Subdivision",

Ruiqi Ni, Teseo Schneider, Daniele Panozzo, Zherong Pan, Xifeng Gao. *ICRA*, 2021.

•

"Progressive Parameterizations",

Ligang Liu, Chunyang Ye, Ruiqi Ni, Xiaoming Fu.

ACM Trans. on Graphics (SIGGRAPH), 2018.

RESEARCH EXPERIENCE **Purdue University**

Research Assistant Jan 2022 – Present

Advisor: Prof. Ahmed H. Qureshi

Project: Physics-informed Neural Motion Planning

- Proposed PINN-based Eikonal solvers yielding continuous cost-to-go functions for planning.
- Developed TD loss with metric learning for scalable training and policy extraction.
- Extended to constraint manifolds and unknown environments for real-time mapping and planning.

Florida State University

Research Assistant

Aug 2019 - Dec 2021

Advisors: Prof. Xifeng Gao; Dr. Zherong Pan

- Project: Robust Robot Trajectory Optimization
 - Designed asymptotically optimal trajectory optimization with continuous collision detection.
 - Developed ADMM-based multi-agent optimization decoupling objectives from collision constraints.

University of Science and Technology of China

Undergraduate Research Assistant

Sep 2017 – Jun 2018

Advisors: Prof. Ligang Liu; Dr. Xiaoming Fu

- Project: Progressive Mesh Parameterizations
 - Built a progressive optimization framework improving efficiency and robustness across complex geometries.

WORK EXPERIENCE

XPeng

Research Intern

Jun 2025 - Present

Advisors: Dr. Chenyi Chen; Nathon Zhao

- Project: Vision-Language-Action (VLA) Models
 - Built manipulation data-generation pipelines combining simulation capture with reasoning-based annotations.
 - Evaluated and improved VLA reasoning for long-horizon task planning.
 - Applied diffusion models and flow matching for action learning to improve stability and control accuracy.

Lightspeed Studio, Tencent America

Research Intern

May 2024 – Aug 2024

Advisor: Dr. Zherong Pan

- Project: Temporal Difference Learning for Motion Planning
 - Implemented TD-based planning algorithms accelerating convergence in large-scale environments
 - Integrated physics-informed models with sampling-based planners for scalable training.

Adobe Research

Research Intern

May 2021 – Aug 2021

Advisor: Dr. Kevin Wampler

- Project: Constrained Vector Graphics Editing
 - Developed optimization algorithms enabling constraint-driven editing with prioritized geometric constraints.

SERVICE

Reviewer

Journals: IEEE T-RO; IEEE RA-L; TASE; The Visual Computer

Conferences: CoRL; SIGGRAPH; SIGGRAPH Asia; ICRA; IROS; ICLR